您的位置 首页 > 资格资历

初级数据分析师培训教程 数据分析师成长中的三次跨越

各位老铁们好,相信很多人对初级数据分析师培训教程都不是特别的了解,因此呢,今天就来为大家分享下关于初级数据分析师培训教程以及数据分析师成长中的三次跨越的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!

1、“如何快速成为数据分析师”往往是搜索的热点话题。然而,成长为数据分析师以后呢?未来在哪里?职业终点是什么?很少有人细致探讨。在本文中,我们来认真讨论数据分析师成长中的三次跨越。

2、第一个真相是:数据分析岗看起来工资高,完全是沾了IT部门的光。挂在IT部门下的数据分析岗,是按程序员标准给工资的。因此,当你想做专业的数据分析师的时候,掌握SQL取数能力,熟悉Tableau/PowerBI/FineBI等至少一个BI工具,对Python的数据处理、数据科学包有了解,是入门门票。

3、这是必须实现的第一个跨越:掌握取数工具。

4、经常有些在校的同学心存幻想:我找一个不写代码的“商业分析师”“经营分析师”“业务分析师”。首先,刚毕业的同学,你也不懂商业/不懂业务呀,不掌握取数工具,只能干最低级的整理Excel表哥表姐,拿的是文员工资,薪资低得令人发指。

5、这样能有效地避免“叶公好龙”!其实,如果不想取数,完全可以做一个懂数据的运营,产品经理,策划,没必要做专职的数据分析师。等你能熟练从数据库取数,就实现了第一次跨越。

6、数据分析师的成长不是线性的。并不是初级的数据分析师每天写500行SQL,中级的每天写1000行SQL,高级的每天写2000行SQL。每天写2000行SQL那种,又称:查数姑,SQLboy,人肉取数机,数据工具人……总之不是什么好状态。

7、第二个真相是:数据分析岗本质是服务岗位,要支持业务工作。因此想办法体现自己的业务价值,才能在工作中掌握主动,避免被动取数;才能更好体现绩效,升职加薪。

8、这一步跨越,实现起来会比较难,因为:

9、想突破这一阶段,也是有办法的。这一阶段的核心就是:转变思维,从入门阶段“对着教程学答案”,转变成“训练自己的逻辑能力,自己找答案”。

10、这些更多是见识层面的增长,没有标准答案,但是积累多了能实打实地提升自己处理问题能力。当你能熟练地把业务口中的话转化为分析逻辑树的时候,就成功度过了这个阶段。

11、第三个真相是:同其他IT团队一样,如果你只会单打独斗,就很难做大部门,很难实现升职加薪。甚至,数据项目比其他IT项目更难做,因为业务的期望值往往很高。在外界各种宣传下,人们总以为:“只要有个数据,就能精准预测、全知全能……”业务方过高的期望与稀烂的基础建设之间的矛盾,始终是数据分析领域头号矛盾。

12、可以说,好的项目组织是自己前几年技术/业务经验的综合运用。项目做好了,领导们重视数据团队,给你更多人员编制,你能把团队做大,也就成功地实现管理层跃迁。

13、这一个环节会卡很多同学,因为很多公司就压根没有项目机会。运气好的同学,则可以从小项目开始(一般都是小专题报告),逐步锻炼能力。

14、当然了,也不是所有同学都会走到最后,很多同学卡在第二步,觉得跑数没意思转行。其实数据分析能力在很多工作都适用。比如策略产品、用户运营、风控、商品管理、销售运营等业务岗,数据分析转数仓、算法等开发岗也有一定机会。

15、接地气的陈老师,微信公众号:接地气的陈老师,人人都是产品经理专栏作家。资深咨询顾问,在互联网,金融,快消,零售,耐用,美容等15个行业有丰富数据相关经验。

16、本文原创发布于人人都是产品经理。未经许可,禁止转载。

17、题图来自Unsplash,基于CC0协议。

18、该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务。

关于本次初级数据分析师培训教程和数据分析师成长中的三次跨越的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。

本站涵盖的内容、图片、视频等数据,部分未能与原作者取得联系。若涉及版权问题,请及时通知我们并提供相关证明材料,我们将及时予以删除!谢谢大家的理解与支持!

Copyright © 2023